Some new inequalities for quotients of modified Bessel functions of the first and second kinds are deduced. Moreover, some developments on bounds for modified Bessel functions of the first and second kinds, higher-order monotonicity properties of these functions and applications to a special function that arises in finite elasticity, are summarized. The key tool in our proofs is a frequently used criterion for the monotonicity of the quotient of two Maclaurin series.