We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Schertz conjectured that every finite abelian extension of imaginary quadratic fields can be generated by the norm of the Siegel–Ramachandra invariants. We present a conditional proof of his conjecture by means of the characters on class groups and the second Kronecker limit formula.
We generate ray-class fields over imaginary quadratic fields in terms of Siegel–Ramachandra invariants, which are an extension of a result of Schertz. By making use of quotients of Siegel–Ramachandra invariants we also construct ray-class invariants over imaginary quadratic fields whose minimal polynomials have relatively small coefficients, from which we are able to solve certain quadratic Diophantine equations.
We provide a concrete example of a normal basis for a finite Galois extension which is not abelian. More precisely, let $\mathbb{C}(X(N))$ be the field of meromorphic functions on the modular curve $X(N)$ of level $N$. We construct a completely free element in the extension $\mathbb{C}(X(N))/\mathbb{C}(X(1))$ by means of Siegel functions.
It is well known that every elliptic curve over the rationals admits a parametrization by means of modular functions. In this short note, we show that only finitely many elliptic curves over $\mathbf{Q}$ can be parametrized by modular units. This answers a question raised by W. Zudilin in a recent work on Mahler measures. Further, we give the list of all elliptic curves $E$ of conductor up to 1000 parametrized by modular units supported in the rational torsion subgroup of $E$. Finally, we raise several open questions.
We show that a weakly holomorphic modular function can be written as a sum of modular units of higher level. Furthermore, we find a necessary and sufficient condition for a meromorphic Siegel modular function of degree g to have neither a zero nor a pole on a certain subset of the Siegel upper half-space .
The discriminant function $\Delta$ is a certain rigid analytic modular form defined on Drinfeld's upper half-plane $\Omega$. Its absolute value $\vert \Delta\vert$ may be considered as a function on the associated Bruhat–Tits tree ${\cal T}$. We compare $\log \vert \Delta\vert$ with the conditionally convergent complex-valued Eisenstein series $E$ defined on ${\cal T}$ and thereby obtain results about the growth of $\vert \Delta$ and of some related modular forms. We further determine to what extent roots may be extracted of $\Delta(z)/\Delta(nz)$, regarded as a holomorphic function on $\Omega$. In some cases, this enables us to calculate cuspidal divisor class groups of modular curves.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.