We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Based on the conditions for identifying additive link metrics presented in Chapter 2, this chapter addresses two network design questions: (1) Given an unbounded number of monitors, where should they be placed in the network to identify the metrics of all the links using a minimum number of monitors? (2) Given a bounded number of monitors, where should they be placed in the network to identify the metrics of the largest subset of links? The focus here is on the design of intelligent algorithms that can efficiently compute the optimal monitor locations without enumerating all possible monitor placements, achieved through strategic decomposition of the network topology based on the required identifiability conditions. Variations of these algorithms are also given to address cases with predictable or unpredictable topology changes and limited links of interest. In addition to theoretical analysis, empirical results are given to demonstrate the capability of selected algorithms for which such results are available.
Based on the identifiability measures for Boolean network tomography presented in Chapter 5, this chapter addresses the follow-up question of how to design the measurement system to optimize the identifiability measure of interest, with a focus on the placement of monitoring nodes.Depending on the mechanism to collect measurements, the problem is divided into (1) monitor placement, (2) beacon placement, and (3) monitoring-aware service placement, where the first approach requires monitoring nodes at both endpoints of each measurement path, the second approach requires a monitoring node only at one of the endpoints of each measurement path, and the third approach requires each measurement path to be the default routing path between a client and a server. As many of such problems are NP-hard, the focus is put on establishing the hardness of the optimal solution and developing polynomial-time suboptimal algorithms with performance guarantees. The chapter also covers a suite of path construction problems addressing how to construct or select measurement paths to optimize the tradeoff between identifiability and probing cost.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.