We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter reviews the genetics of sleep and its most widely used correlate, the electroencephalogram (EEG), in mice and humans. Monozygotic (MZ) and dizygotic (DZ) studies allow measurement of genetic and environmental contributions to a trait. Reverse genetic approaches involve isolation of candidate genes, use of transgenic models, and phenotypic analysis of mutant animals. The first quantitative trait locus (QTL) mapping study for sleep amounts identified several genomic regions associated with the amount of rapid eye movement (REM) sleep. For the identification of genes involved in sleep, large-scale analysis of gene expression by microarrays has been performed in rats and mice. Microarray studies allow better understanding of how gene expression changes as a function of duration of wakefulness. A mutagenesis screen in mice is underway and might turn out to be successful in finding major genes regulating sleep duration as well as EEG.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.