A special rotation procedure is proposed for the exploratory dynamic factor model for stationary multivariate time series. The rotation procedure applies separately to each univariate component series of a q-variate latent factor series and transforms such a component, initially represented as white noise, into a univariate moving-average. This is accomplished by minimizing a so-called state-space criterion that penalizes deviations of the rotated solution from a generalized state-space model with only instantaneous factor loadings. Alternative criteria are discussed in the closing section. The results of an empirical application are presented in some detail.