We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the convergence rate of multi-marginal optimal transport costs that are regularized with the Boltzmann–Shannon entropy, as the noise parameter $\varepsilon $ tends to $0$. We establish lower and upper bounds on the difference with the unregularized cost of the form $C\varepsilon \log (1/\varepsilon )+O(\varepsilon )$ for some explicit dimensional constants C depending on the marginals and on the ground cost, but not on the optimal transport plans themselves. Upper bounds are obtained for Lipschitz costs or locally semiconcave costs for a finer estimate, and lower bounds for $\mathscr {C}^2$ costs satisfying some signature condition on the mixed second derivatives that may include degenerate costs, thus generalizing results previously in the two marginals case and for nondegenerate costs. We obtain in particular matching bounds in some typical situations where the optimal plan is deterministic.
In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the solution to the Monge–Ampère equation. We show that theWasserstein gradient flow theory provides a very good framework to solve these highly nonlinear systems. At the end, a uniqueness result is presented in dimension one based on convexity arguments.
In this paper, we prove that on a compact, $n$-dimensional Alexandrov space with curvature at least −1, the Wasserstein barycenter of Borel probability measures ${{\mu }_{1}},\ldots ,{{\mu }_{m}}$ is absolutely continuous with respect to the $n$-dimensional Hausdorff measure if one of them is.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.