We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In environmental science, where information from sensor devices are sparse, data fusion for mapping purposes is often based on geostatistical approaches. We propose a methodology called adaptive distance attention that enables us to fuse sparse, heterogeneous, and mobile sensor devices and predict values at locations with no previous measurement. The approach allows for automatically weighting the measurements according to a priori quality information about the sensor device without using complex and resource-demanding data assimilation techniques. Both ordinary kriging and the general regression neural network (GRNN) are integrated into this attention with their learnable parameters based on deep learning architectures. We evaluate this method using three static phenomena with different complexities: a case related to a simplistic phenomenon, topography over an area of 196 $ {km}^2 $ and to the annual hourly $ {NO}_2 $ concentration in 2019 over the Oslo metropolitan region (1026 $ {km}^2 $). We simulate networks of 100 synthetic sensor devices with six characteristics related to measurement quality and measurement spatial resolution. Generally, outcomes are promising: we significantly improve the metrics from baseline geostatistical models. Besides, distance attention using the Nadaraya–Watson kernel provides as good metrics as the attention based on the kriging system enabling the possibility to alleviate the processing cost for fusion of sparse data. The encouraging results motivate us in keeping adapting distance attention to space-time phenomena evolving in complex and isolated areas.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.