Campylobacter is a major foodborne pathogen and is commonly present in food producing animals. This pathogenic organism is highly adaptable and has become increasingly resistant to various antibiotics. Recently, both the Centers for Disease Control and Prevention and the World Health Organization have designated antibiotic-resistant Campylobacter as a serious threat to public health. For the past decade, multiple mechanisms conferring resistance to clinically important antibiotics have been described in Campylobacter, and new resistance mechanisms constantly emerge in the pathogen. Some of the recent examples include the erm(B) gene conferring macrolide resistance, the cfr(C) genes mediating resistance to florfenicol and other antimicrobials, and a functionally enhanced variant of the multidrug resistance efflux pump, CmeABC. The continued emergence of new resistance mechanisms illustrates the extraordinary adaptability of Campylobacter to antibiotic selection pressure and demonstrate the need for innovative strategies to control antibiotic-resistant Campylobacter. In this review, we will briefly summarize the trends of antibiotic resistance in Campylobacter and discuss the mechanisms of resistance to antibiotics used for animal production and important for clinical therapy in humans. A special emphasis will be given to the newly discovered antibiotic resistance.