We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Severe traumatic brain injury (TBI) includes a heterogenous set of injury patterns and affects a wide range of population groups including children, young adults and the elderly. It can cause death or disabling morbidity and is associated with significant socioeconomic burden.
Following the primary injury, a series of metabolic, inflammatory and vascular processes occur which may lead to secondary tissue damage. Additionally, patients with severe TBI are also at increased risk of systemic complications.
The initial resuscitation and subsequent critical care management of patients with TBI focuses on limiting secondary brain injury. This requires a systematic approach to avoid physiological disturbances which may worsen cerebral oxygen delivery and energy substrate metabolism. Factors such as hypotension, hypoxaemia, hypo- and hyperglycaemia and hyperthermia can directly exacerbate the secondary injury and lead to worse outcomes. The maintenance of cerebral perfusion with adequate cerebral oxygenation and energy substrate delivery is critical but may be challenging to achieve.
Management protocols have evolved with international consensus, providing guidelines that can assist clinicians in delivering optimal care.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.