Risk behavior has substantial consequences for health, well-being, and general behavior. The association between real-world risk behavior and risk behavior on experimental tasks is well documented, but their modeling is challenging for several reasons. First, many experimental risk tasks may end prematurely leading to censored observations. Second, certain outcome values can be more attractive than others. Third, a priori unknown groups of participants can react differently to certain risk-levels. Here, we propose the censored mixture model which models risk taking while dealing with censoring, attractiveness to certain outcomes, and unobserved individual risk preferences, next to experimental conditions.