We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Though social media helps spread knowledge more effectively, it also stimulates the propagation of online abuse and harassment, including hate speech. It is crucial to prevent hate speech since it may have serious adverse effects on both society and individuals. Therefore, it is not only important for models to detect these speeches but to also output explanations of why a given text is toxic. While plenty of research is going on to detect online hate speech in English, there is very little research on low-resource languages like Hindi and the explainability aspect of hate speech. Recent laws like the “right to explanations” of the General Data Protection Regulation have spurred research in developing interpretable models rather than only focusing on performance. Motivated by this, we create the first interpretable benchmark hate speech corpus hate speech explanation (HHES) in the Hindi language, where each hate post has its stereotypical bias and target group category. Providing descriptions of internal stereotypical bias as an explanation of hate posts makes a hate speech detection model more trustworthy. Current work proposes a commonsense-aware unified generative framework, CGenEx, by reframing the multitask problem as a text-to-text generation task. The novelty of this framework is it can solve two different categories of tasks (generation and classification) simultaneously. We establish the efficacy of our proposed model (CGenEx-fuse) on various evaluation metrics over other baselines when applied to the Hindi HHES dataset.
Disclaimer
The article contains profanity, an inevitable situation for the nature of the work involved. These in no way reflect the opinion of authors.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.