Microplastics pollution is a widely recognized issue, although significant analytical challenges remain to be overcome in order to achieve a more comprehensive ecological understanding. The complex nature of this pollutant, with its variable physical and chemical properties, presents considerable challenges when it comes to establishing standardized methods for studying it. One crucial factor that influences its toxicity is particle size, yet even this parameter lacks a well-established framework, especially in the case of nanoplastics. Although the size range limits are already proposed in the literature, where the most acceptable values for microplastics are from 1 to 5,000 μm and for nanoplastics are from 1 to 1,000 nm, we propose narrowing these limits to 0.1–1,000 μm and 10–100 nm, respectively. We based our discussion on conceptual terminology, polymer structure and toxicity, highlighting the significance of accurately defining their size range. The standardization of these limits will allow the development of more efficient approaches to studying this pollutant, enabling a comprehensive understanding of its ecological consequences and potential risks.