Various physical and analytical techniques (XRD, XRF, SEM, FTIR and EPR) have been used to investigate the effects of chemical and/or physical modification of Ranong kaolin, which has been proposed as a potential bleaching clay for vegetable oils. Acid treatment after grinding resulted in major changes compared with acid treatment of the original mineral sample or mechanical treatment alone. Previous work has shown that the combined treatments produce increases in surface area and new porous structures, and the present measurements show reductions in Al:Si ratios. These are accompanied by a major reduction in O–H stretching vibrations as a result of grinding, although acid treatment produced little subsequent effect on the O–H bands in the FTIR spectra. However, acid treatment resulted in a reduction in the Al–OH–Al bending vibrations and the appearance of Si–O bands associated with newly synthesized material; these effects were much greater with samples that had been ground prior to the acid treatment. There were appreciable qualitative differences in the way in which the EPR spectra of Fe and Mn were affected; the Fe signal was sensitive to mechanical treatment, but little subsequent change was induced by acid extraction, whereas the Mn peaks were sensitive to the both the pH and the chemical nature of the acid used. These results therefore indicate that the Fe and Mn are in different types of site in the kaolin structure. Little change was observed in the main oxygen-based free radical centre associated with Si atoms, but that associated with Al was lost as a result of the treatments. Such mineral characterization is of fundamental importance to understanding the modification of kaolins and their uses as adsorbents in the food and environmental sciences.