Previous investigations have indicated that c-Jun N-terminal kinase (JNK) regulates the maturation and aging of oocytes produced by deuterostome animals. In order to assess the roles of this kinase in a protostome, oocytes of the marine nemertean worm Cerebratulus were stimulated to mature and subsequently aged before being probed with phospho-specific antibodies against active forms of JNK and maturation-promoting factor (MPF). Based on blots of maturing oocytes, a 40-kD putative JNK is normally activated during germinal vesicle breakdown (GVBD), which begins at 30 min post-stimulation with seawater, whereas treating immature oocytes with JNK inhibitors downregulates both the 40-kD JNK signal and GVBD, collectively suggesting a 40-kD JNK may facilitate oocyte maturation. Along with this JNK activity, mature oocytes also exhibit high levels of MPF at 2 h post-stimulation. However, by ~6–8 h post-GVBD, mature oocytes lose the 40-kD JNK signal, and at ~20–30 h of aging, an ~48-kD phospho-JNK band arises as oocytes deactivate MPF and begin to lyse during a necroptotic-like mode of death. Accordingly, JNK inhibitors reduce the aging-related 48-kD JNK phosphorylation while maintaining MPF activity and retarding oocyte degradation. Such findings suggest that a 48-kD JNK may help deactivate MPF and trigger death. Possible mechanisms by which JNK activation either together with, or independently of, protein neosynthesis might stimulate oocyte degradation are discussed.