We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Lithium-treated patients with polyuria are at increased risk of lithium toxicity. We aimed to describe the clinical benefits and risks of different management strategies for polyuria in community lithium-treated patients.
Methods:
This is a naturalistic, observational, prospective 12-month cohort study of lithium-treated patients with polyuria attending a community mental health service in Dublin, Ireland. When polyuria was detected, management changed in one of four ways: (a) no pharmacological change; (b) lithium dose decrease; (c) lithium substitution; or (d) addition of amiloride.
Results:
Thirty-four participants were diagnosed with polyuria and completed prospective data over 12 months. Mean 24-hour urine volume decreased from 4852 to 4344 ml (p = 0.038). Mean early morning urine osmolality decreased from 343 to 338 mOsm/kg (p = 0.823). Mean 24-hour urine volume decreased with each type of intervention but did not attain statistical significance for any individual intervention group. Mean early morning urine osmolality decreased in participants with no pharmacological change and increased in participants who received a change in medication but these changes did not attain statistical significance. Only participants who discontinued lithium demonstrated potentially clinically significant changes in urine volume (mean decrease 747 ml in 24 hours) and early morning urine osmolality (mean increase 31 mOsm/kg) although this was not definitively proven, possibly owing to power issues.
Conclusions:
Managing polyuria by decreasing lithium dose does not appear to substantially improve objective measures of renal tubular dysfunction, whereas substituting lithium may do so. Studies with larger numbers and longer follow-up would clarify these relationships.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.