We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we discuss how to represent network data inside a computer, with some examples of computational tasks and the data structures that enable those computations. When working with network data using code, you have many choices of data structures---but which ones are best for our given goals? Writing your own code to process network data can be valuable, yet existing libraries, which feature extensively-tested and efficiently-engineered functionalities, are worth considering as well. Python and R, both excellent programming languages for data science, come well-equipped with third-party libraries for working with network data, and we describe some examples. We also discuss choosing and using typical file formats for storing network data, as many standard formats exist.
Machine learning has revolutionized many fields, including science, healthcare, and business. It is also widely used in network data analysis. This chapter provides an overview of machine learning methods and how they can be applied to network data. Machine learning can be used to clean, process, and analyze network data, as well as make predictions about networks and network attributes. Methods that transform networks into meaningful representations are especially useful for specific network prediction tasks, such as classifying nodes and predicting links. The challenges of using machine learning with network data include recognizing data leakage and detecting dataset shift. As with all machine learning, effective use of machine learning on networks depends on practicing good data hygiene when evaluating a predictive model’s performance.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.