We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To address if the long-standing association between maternal infection, depression/anxiety in pregnancy, and offspring neurodevelopmental disorder (NDD) is causal, we conducted two negative-control studies.
Methods
Four primary care cohorts of UK children (pregnancy, 1 and 2 years prior to pregnancy, and siblings) born between 1 January 1990 and 31 December 2017 were constructed. NDD included autism/autism spectrum disorder, attention-deficit/hyperactivity disorder, intellectual disability, cerebral palsy, and epilepsy. Maternal exposures included depression/anxiety and/or infection. Maternal (age, smoking status, comorbidities, body mass index, NDD); child (gender, ethnicity, birth year); and area-level (region and level of deprivation) confounders were captured. The NDD incidence rate among (1) children exposed during or outside of pregnancy and (2) siblings discordant for exposure in pregnancy was compared using Cox-regression models, unadjusted and adjusted for confounders.
Results
The analysis included 410 461 children of 297 426 mothers and 2 793 018 person-years of follow-up with 8900 NDD cases (incidence rate = 3.2/1000 person years). After adjustments, depression and anxiety consistently associated with NDD (pregnancy-adjusted HR = 1.58, 95% CI 1.46–1.72; 1-year adj. HR = 1.49, 95% CI 1.39–1.60; 2-year adj. HR = 1.62, 95% CI 1.50–1.74); and to a lesser extent, of infection (pregnancy adj. HR = 1.16, 95% CI 1.10–1.22; 1-year adj. HR = 1.20, 95% CI 1.14–1.27; 2-year adj. HR = 1.19, 95% CI 1.12–1.25). NDD risk did not differ among siblings discordant for pregnancy exposure to mental illness HR = 0.97, 95% CI 0.77–1.21 or infection HR = 0.99, 95% CI 0.90–1.08.
Conclusions
Maternal risk appears to be unspecific to pregnancy: our study provided no evidence of a specific, and therefore causal, link between in-utero exposure to infection, common mental illness, and later development of NDD.
Catatonia is a psychomotor syndrome frequently observed in disorders with neurodevelopmental impairments, including psychiatric disorders such as schizophrenia. The orbitofrontal cortex (OFC) has been repeatedly associated with catatonia. It presents with an important interindividual morphological variability, with three distinct H-shaped sulcal patterns, types I, II, and III, based on the continuity of the medial and lateral orbital sulci. Types II and III have been identified as neurodevelopmental risk factors for schizophrenia. The sulcal pattern of the OFC has never been investigated in catatonia despite the role of the OFC in the pathophysiology and the neurodevelopmental component of catatonia.
Methods
In this context, we performed a retrospective analysis of the OFC sulcal pattern in carefully selected homogeneous and matched subgroups of schizophrenia patients with catatonia (N = 58) or without catatonia (N = 65), and healthy controls (N = 82).
Results
Logistic regression analyses revealed a group effect on OFC sulcal pattern in the left (χ2 = 18.1; p < .001) and right (χ2 = 28.3; p < .001) hemispheres. Catatonia patients were found to have more type III and less type I in both hemispheres compared to healthy controls and more type III on the left hemisphere compared to schizophrenia patients without catatonia.
Conclusion
Because the sulcal patterns are indirect markers of early brain development, our findings support a neurodevelopmental origin of catatonia and may shed light on the pathophysiology of this syndrome.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.