We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dual-systems models, positing an interaction between two distinct and competing systems (i.e. top-down self-control, and bottom-up reward- or emotion-based drive), provide a parsimonious framework for investigating the interplay between cortical and subcortical brain regions relevant to impulsive personality traits (IPTs) and their associations with psychopathology. Despite recent developments in multivariate analysis of genome-wide association studies (GWAS), molecular genetic investigations of these models have not been conducted.
Methods
Using IPT GWAS, we conducted confirmatory genomic structural equation models (GenomicSEM) to empirically evaluate dual-systems models of the genetic architecture of IPTs. Genetic correlations between dual-systems factors and relevant cortical and subcortical neuroimaging phenotypes (regional/structural volume, cortical surface area, cortical thickness) were estimated and compared.
Results
GenomicSEM dual-systems models underscored important sources of shared and unique genetic variance between top-down and bottom-up constructs. Specifically, a dual-systems genomic model consisting of sensation seeking and lack of self-control factors demonstrated distinct but related sources of genetic influences (rg = 0.60). Genetic correlation analyses provided evidence of differential associations between dual-systems factors and cortical neuroimaging phenotypes (e.g. lack of self-control negatively associated with cortical thickness, sensation seeking positively associated with cortical surface area). No significant associations were observed with subcortical phenotypes.
Conclusions
Dual-systems models of the genetic architecture of IPTs tested were consistent with study hypotheses, but associations with relevant neuroimaging phenotypes were mixed (e.g. no associations with subcortical volumes). Findings demonstrate the utility of dual-systems models for studying IPT genetic influences, but also highlight potential limitations as a framework for interpreting IPTs as endophenotypes for psychopathology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.