We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Exposure to alcohol causes imbalances in neuroimmune function and impaired brain development.
Objectives
Alcohol activates neuroimmune molecules, expressed and secreted by glial cells in the brain, alter neuronal function and stimulate alcoholic behavior.
Methods
The study involved women aged 25-41 years-did not drink alcohol 1 month before and during pregnancy – 1-st group; women with I-II degree of alcoholism 3-13 years – 2-nd group. Embryonic material were obtained 8-15 weeks of igestation. 2-nd group were divided into subgroups. Group Alcohol (A)-alcoholic women,s embrious, included 2 subgroups: A1-embryos 8-9 weeks, A2-10-11 weeks of gestation (n=12). The Control group (K) includ control samples K1-8–9, K2-10-11 weeks (n=14). The analysis of changes in morphometric parameters was used to identify quantitative changes among glioblasts, correlation between the degree of differentiation components and the degree of influence of alcohol. For this, the program AxioVision 4.8 was used Parameters of GABAA/benzodiazepine receptors were studied by the radio-receptor assay of [3H]-flunitrazepam with synaptoneurosomes.
Results
Changes in glioblasts tof human brain embryos and fetuses were revealed under conditions of chronic prenatal alcoholization with an increase in gestational age compared to the control subgroups: a significant increase in the average number of glioblasts, the length of the perimeters of the presynaptic terminal, postsynaptic density, presynaptic terminal areas were significantly less (p<0, 01) in the study group than in the control. Exposure to ethanol reduces the affinity of GABAA/benzodiazepine receptors, which affects neuronal plasticity associated with the development of glioblasts and neuroblasts during embryogenesis.
Conclusions
Changes in microglial cause disruption of the neuronal activity
Disclosure
No significant relationships.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.