We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Thoracic outlet syndrome is a collection of conditions that lead to the compression of the nerves and blood vessels in the thoracic outlet area. Symptoms such as pain, numbness, weakness, and discoloration may occur depending on the specific structures affected. There is currently no agreed-upon diagnostic criteria, but a detailed patient history, physical examination, and appropriate imaging tests can help with diagnosis. The first-line treatment for thoracic outlet syndrome usually involves conservative measures like physical therapy, lifestyle changes, medications such as NSAIDs and injections like botulinum toxin A, steroids, and local anesthetics. If conservative treatments fail, surgical decompression may be considered. This chapter aims to provide a review of the epidemiology, causes, anatomy, symptoms, diagnosis, and treatment of thoracic outlet syndrome.
Neurological involvement associated with SARS-CoV-2 infection is increasingly recognized. However, the specific characteristics and prevalence in pediatric patients remain unclear. The objective of this study was to describe the neurological involvement in a multinational cohort of hospitalized pediatric patients with SARS-CoV-2.
Methods:
This was a multicenter observational study of children <18 years of age with confirmed SARS-CoV-2 infection or multisystemic inflammatory syndrome (MIS-C) and laboratory evidence of SARS-CoV-2 infection in children, admitted to 15 tertiary hospitals/healthcare centers in Canada, Costa Rica, and Iran February 2020–May 2021. Descriptive statistical analyses were performed and logistic regression was used to identify factors associated with neurological involvement.
Results:
One-hundred forty-seven (21%) of 697 hospitalized children with SARS-CoV-2 infection had neurological signs/symptoms. Headache (n = 103), encephalopathy (n = 28), and seizures (n = 30) were the most reported. Neurological signs/symptoms were significantly associated with ICU admission (OR: 1.71, 95% CI: 1.15–2.55; p = 0.008), satisfaction of MIS-C criteria (OR: 3.71, 95% CI: 2.46–5.59; p < 0.001), fever during hospitalization (OR: 2.15, 95% CI: 1.46–3.15; p < 0.001), and gastrointestinal involvement (OR: 2.31, 95% CI: 1.58–3.40; p < 0.001). Non-headache neurological manifestations were significantly associated with ICU admission (OR: 1.92, 95% CI: 1.08–3.42; p = 0.026), underlying neurological disorders (OR: 2.98, 95% CI: 1.49–5.97, p = 0.002), and a history of fever prior to hospital admission (OR: 2.76, 95% CI: 1.58–4.82; p < 0.001).
Discussion:
In this study, approximately 21% of hospitalized children with SARS-CoV-2 infection had neurological signs/symptoms. Future studies should focus on pathogenesis and long-term outcomes in these children.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.