We prove existence of minimizing movements for thedislocation dynamics evolution law of a propagating front, in which the normal velocity of the front is the sum of a non-local term and a mean curvature term. We prove that any such minimizing movement is a weak solution of this evolution law, in a sense related to viscositysolutions of the corresponding level-set equation. We also prove theconsistency of this approach, by showing that any minimizing movementcoincides with the smooth evolution as long as the latter exists. Inrelation with this, we finally prove short time existence and uniqueness of a smoothfront evolving according to our law, provided the initial shape issmooth enough.