The concept of ecosystem engineering has catalysed novel approaches and models for non-trophic species interactions and ecosystem functions. Ecosystem engineers physically modify abiotic and biotic environments, thereby creating new habitats that can be colonized by a new suite of species. In the Peruvian Amazonas, we tested whether peccaries (Tayassuidae) function as ecosystem engineers by creating and maintaining wallows. Such wallows could be critical aquatic habitats and breeding sites for anuran species during dry seasons. We compared hydroperiods of 21 peccary wallows and 13 naturally formed ponds across three dry seasons and found that wallows had a consistently higher mean water surface area than ponds. We also examined the pH, dissolved oxygen and temperature, and found no significant differences in these parameters between water bodies. Wallows had a significantly higher density of tadpoles, metamorphs and adult anurans, as well as higher β-diversity and species richness than ponds. This study not only provides the first systematic evidence of the ecosystem engineering processes of peccaries, but also reveals the positive consequences of such for anuran species.