We analyze residual and hierarchicala posteriori error estimates for nonconforming finite elementapproximations of elliptic problems with variable coefficients.We consider a finite volume box scheme equivalent toa nonconforming mixed finite element method in a Petrov–Galerkinsetting. We prove thatall the estimators yield global upper and local lower bounds for the discretizationerror. Finally, we present results illustrating the efficiency of theestimators, for instance, in the simulation of Darcy flows throughheterogeneous porous media.