We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a notion of modulated topological vector spaces, that generalises, among others, Banach and modular function spaces. As applications, we prove some results which extend Kirk’s and Browder’s fixed point theorems. The theory of modulated topological vector spaces provides a very minimalist framework, where powerful fixed point theorems are valid under a bare minimum of assumptions.
We consider some discrete and continuous dynamics in a Banach spaceinvolving a non expansive operator J and a corresponding family ofstrictly contracting operators Φ (λ, x): = λJ($\frac{1-\lambda}{\lambda}$x) for λ ∈ ] 0,1] . Our motivationcomes from the study of two-player zero-sum repeated games, wherethe value of the n-stage game (resp. the value of theλ-discounted game) satisfies the relationvn = Φ($\frac{1}{n}$, $v_{n-1}$) (resp. $v_\lambda$ = Φ(λ, $v_\lambda$)) where J is the Shapleyoperator of the game. We study the evolution equationu'(t) = J(u(t))- u(t) as well as associated Eulerian schemes,establishing a new exponential formula and a Kobayashi-likeinequality for such trajectories. We prove that the solution of thenon-autonomous evolution equationu'(t) = Φ(λ(t), u(t))- u(t) has the same asymptoticbehavior (even when it diverges) as the sequence vn (resp. as thefamily $v_\lambda$) when λ(t) = 1/t (resp. whenλ(t) converges slowly enough to 0).