We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Flow separation is the ejection of fluid particles from a small neighborhood of a solid boundary. Such a breakaway from the boundary is often due to the detachment of a boundary layer, but it also occurs in highly viscous flows where the boundary layer description is inapplicable. Accordingly, we will treat separation here as a purely kinematic phenomenon: the formation of a material spike from a flow boundary.Such material spikes form along attracting LCSs, as we have already seen inthe previous chapter. We consider LCSs acting as separation or attachment profiles here separately because their contact points with the boundary and their local shapes near the boundary can be located from a purely Eulerian analysis along the boundary. Since the attachment points of material separation profiles cannot move under no-slip boundary conditions, such profiles necessarily create fixed separation. In contrast, material spikes emanating from off-boundary points generally result in moving separation in unsteady flows. We will discuss how both fixed and moving separation can be described via material barriers to transport.
In this chapter, we will be concerned with barriers to the transport of inertial (i.e., small but finite-size) particles in a carrier fluid. As a general rule, the more the density of inertial particles diverts from the carrier fluid density, the more they tend to depart from fluid trajectories. Specifically, while small enough neutrally buoyant particles often remain close to fluid motion, the same is not true for heavy particles (aerosols) and light particles (bubbles). Practical flow problems involving inertial particles tend to be temporally aperiodic and hence the machinery of LCSs discussed in earlier chaptersis also highly relevant for inertial particles. By inertial LCSs (or iLCSs, for short), we mean coherent structures composed of distinguished inertial particles that govern inertial transport patterns. In contrast, LCSs (composed of distinguished fluid particles) govern fluid transport patterns. The purpose of this chapter is to examine how iLCSs differ from LCSs of the carrier fluid.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.