Traveling waves for the nonlocal Fisher Equation can exhibit much more complex behaviourthan for the usual Fisher equation. A striking numerical observation is that a travelingwave with minimal speed can connect a dynamically unstable steady state 0 to a Turingunstable steady state 1, see [12]. This is provedin [1, 6] inthe case where the speed is far from minimal, where we expect the wave to be monotone.
Here we introduce a simplified nonlocal Fisher equation for which we can build simpleanalytical traveling wave solutions that exhibit various behaviours. These travelingwaves, with minimal speed or not, can (i) connect monotonically 0 and 1, (ii) connectthese two states non-monotonically, and (iii) connect 0 to a wavetrain around 1. Thelatter exist in a regime where time dynamics converges to another object observed in[3, 8]: awave that connects 0 to a pulsating wave around 1.