Let where {λn}n ∈ Ζ is a sequence of real numbers such that |λn — n| ≤ Δ for some Δ > 0 and all n ∈ ℤ . Extending an obvious property of sin πz to which the function G reduces when Δ = 0 we show that is bounded by a constant independent of n. The result is then applied to a problem concerning derivative sampling in one and several variables.