We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The normal tissue objective (NTO) is a tool used in inverse-planned intensity-modulated radiation therapy (IMRT) to minimize dose dispersion to surrounding tissues. The current study focuses on the NTO’s impact on RapidArc treatment plans for cervical cancer patients or its role in reducing doses to healthy surrounding tissues.
Material and methods:
This study included 11 cervical cancer patients who underwent RapidArc treatment. We assessed plans both with and without the NTO objective by evaluating parameters such as homogeneity, conformity, gradient index (GI), IMRT factor, integral dose and the volume of normal tissues receiving low doses of 40, 30, 20 and 10 Gy. Further, differences between automatic NTO and manual NTO were evaluated using Wilcoxon signed-rank test.
Results:
There were no significant differences in the conformity index, homogeneity index, IMRT factor and integral dose between plans with automatic NTO and those with manual NTO RapidArc plans. However, we did observe a clear advantage in using manual NTO for controlling low-dose exposure to normal tissues. The comparisons between automatic and manual NTO resulted in a GI of 3·1 ± 0·3 versus 2·7 ± 0·68 (p = 0·008). Furthermore, we noticed a significant reduction in the volumes receiving low doses (V10, V20, V30 and V40) with the manual NTO settings.
Conclusion:
The NTO plays a crucial role in optimizing RapidArc plans for treating cervical cancer. Based on the findings of this study, manual NTO settings of distance from PTV border xstart = 0·5 mm, start dose f0 = 105%, end dose f∞ = an average of 40%, dose fall-off 0·2 mm–1 were optimal. Further research involving a larger sample size and exploration of various NTO parameters is necessary to validate our results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.