The presence of additional bodies orbiting a binary star system can be detected by monitoring the binary's eclipse timing. These so-called circumbinary objects will reveal themselves by i) either introducing a reflex motion of the binary system about the total system's barycenter creating a geometric light-travel time effect (LITE), ii) by gravitational perturbations on the binary orbit, or iii) a combination of the two effects resulting in eclipse timing (ETV) and transit timing (TTV) variations. Motivated by the four recently detected circumbinary planets by the Kepler space telescope (Kepler-16b, Kepler-34b, Kepler-35b and Kepler-38b) we have begun to study their dynamics in the presence of an additional massive perturber. In particular we used Kepler-16b as a test bed case. We are aiming to study the detectability of non-transiting and inclined circumbinary planets using the ETV effect along with the fast indicator MEGNO to quantitatively map the chaotic/quasi-periodic regions of the orbital parameter-space and to determine where the orbit of a circumbinary planet will be stable. We have calculated the amplitudes of TTV and ETV signals for different values of the mass and orbital elements of the planet and binary.