We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Here, we take our first step to discover barriers to transport outside the idealized setting of temporally recurrent (steady, periodic or quasiperiodic) velocity fields. While we can no longer hope for even approximately recurring material surfaces in this general setting, we can certainly look for material surfaces that remain coherent. We perceive a material surface to be coherent if it preserves the spatial integrity without developing smaller scales. Those smaller scales would manifest themselves as protrusions from either side of the material surface without a break-up of that surface. In other words, using the terminology of the Introduction, we seek advective transport barriers in nonrecurrent flows as Lagrangian coherent structures (LCS). We will refer to this instantaneous limit of LCSs as objective Eulerian coherent structures (OECSs). These Eulerian structures act as LCSs over infinitesimally short time scales and hence their time-evolution is not material. Despite being nonmaterial, OECSs have advantages and important applications in unsteady flow analysis, as we will discuss separately.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.