We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study reveals the characteristic nature and the use of optically stimulated luminescence dosimeters (OSLD) as an in vivo dosimetry tool for head and neck intensity-modulated radiation therapy (IMRT).
Materials and methods:
Calibration and characterisation of OSLD such as sensitivity, reproducibility, dose-rate dependence, beam quality dependence, output factor measurement and comparison of two bleaching techniques using halogen and compact fluorescent lamp (CFL) were initially performed. Later, eye dose measurements were performed for head and neck IMRT patients using OSLD and were compared with the corresponding dose calculated by the treatment planning system (TPS).
Results:
While the sensitivity was found to be within ±5%, the dose-rate dependence and reproducibility were found to be within ±3%. The OSLD showed an under-response of 3% for 15 MV and an increase in response by 5% for Co60 (1·25 MeV) when compared with the 6 MV X-ray beam. Therefore, a separate calibration for different beam energies is required. The percentage deviation of OSLD to that of TPS was found to be within ±2·77%. The OSLD has been successfully used for the in vivo dosimetry of patients who received IMRT. Hence, it is concluded that OSLDs can serve as effective dosimeters for in vivo dosimetry.
Optically stimulated luminescence dosimeters (OSLDs) have a number of advantages in radiation dosimetry making them an excellent dosimeter for in vivo dosimetry. The study aimed to study the dosimetric characteristics of a commercial optically stimulated luminescence (OSL) system by Landauer Inc., before using it for routine clinical practice for in vivo dosimetry in radiotherapy. Further, this study also aimed to investigate the cause of variability found in the literature in a few dosimetric parameters of carbon-doped aluminium oxide (Al2O3:C).
Materials and methods
The commercial OSLD system uses Al2O3:C nanoDotTM as an active radiation detector and InLightTM microStar® as a readout assembly. Inter-detector response, energy, dose rate, field size and depth dependency of the detector response were evaluated for all available clinical range of photon beam energies in radiotherapy.
Results
Inter-detector variation in OSLD response was found within 3·44%. After single light exposure for the OSL readout, detector reading decreased by 0·29% per reading. The dose linearity was investigated between dose range 50–400 cGy. The dose response curve was found to be linear until 250 cGy, after this dose, the dose response curve was found to be supra-linear in nature. OSLD response was found to be energy independent for Co60 to 10 MV photon energies.
Conclusions
The cause of variability found in the literature for some dosimetric characteristics of Al2O3:C is due to the difference in general geometry, construction of dosimeter, geometric condition of irradiation, phantom material and geometry, beam energy. In addition, the irradiation history of detector used and difference in readout methodologies had varying degree of uncertainties in measurements. However, the large surface area of the detector placed in the phantom with sufficient build-up and backscatter irradiated perpendicularly to incident radiation in Co60 beam is a good method of choice for the calibration of a dosimeter. Understanding the OSLD response with all dosimetric parameters may help us in estimation of accurate dose delivered to patient during radiotherapy treatment.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.