We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we discuss the solvability of the p-k-Hessian inequality
$\sigma _{k}^{\frac 1k} ( \lambda ( D_{i} (|Du|^{p-2}$
$ D_{j}u ) ) ) \geq f(u)$
on the entire space
$\mathbb {R}^{n}$
and provide a necessary and sufficient condition, which can be regarded as a generalized Keller–Osserman condition. Furthermore, we obtain the optimal regularity of solution.
We prove partial regularity with optimal Hölder exponent ofvector-valued minimizers u of the quasiconvex variational integral $\intF( x,u,Du) \,{\rm d}x$ under polynomial growth. We employ the indirectmethod of the bilinear form.
In this paper we find the optimal regularity for viscositysolutions of the pseudo infinity Laplacian. We prove that thesolutions are locally Lipschitz and show an example that provesthat this result is optimal. We also show existence and uniquenessfor the Dirichlet problem.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.