We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Appendix J: mechanical effects of light on matter. The appendix first derives the two forces exerted by a light beam on an atom: the radiation pressure force and the dipole force. Appropriate combinations of beams lead to a friction force that slows the atoms (Doppler cooling), and to a trapping force in the so-called magneto-optics trap (MOT). One then considers the forces exerted on ions, leading to trapping in a suitable geometry of electrodes and fields. Two configurations are used, named Paul and Penning traps. In addition, it is possible to cool the ions to their ground motional state using sideband cooling. It is also possible to trap and cool macroscopic nano-objects, such as microdiscs, membranes, toroids, etc. in a resonant optical cavity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.