We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For functions in
$C^k(\mathbb {R})$
which commute with a translation, we prove a theorem on approximation by entire functions which commute with the same translation, with a requirement that the values of the entire function and its derivatives on a specified countable set belong to specified dense sets. Using this theorem, we show that if A and B are countable dense subsets of the unit circle
$T\subseteq \mathbb {C}$
with
$1\notin A$
,
$1\notin B$
, then there is an analytic function
$h\colon \mathbb {C}\setminus \{0\}\to \mathbb {C}$
that restricts to an order isomorphism of the arc
$T\setminus \{1\}$
onto itself and satisfies
$h(A)=B$
and
$h'(z)\not =0$
when
$z\in T$
. This answers a question of P. M. Gauthier.
A basic problem in the theory of partially ordered vector spaces is to characterise those cones on which every order-isomorphism is linear. We show that this is the case for every Archimedean cone that equals the inf-sup hull of the sum of its engaged extreme rays. This condition is milder than existing ones and is satisfied by, for example, the cone of positive operators in the space of bounded self-adjoint operators on a Hilbert space. We also give a general form of order-isomorphisms on the inf-sup hull of the sum of all extreme rays of the cone, which extends results of Artstein–Avidan and Slomka to infinite-dimensional partially ordered vector spaces, and prove the linearity of homogeneous order-isomorphisms in a variety of new settings.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.