We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Mary S. Morgan, London School of Economics and Political Science,Kim M. Hajek, London School of Economics and Political Science,Dominic J. Berry, London School of Economics and Political Science
This chapter introduces a distinction between two sorts of scientific narrative, modelled on Ted Porter’s discussion of thick and thin description. In thin narratives, sequences of processes and experimental interventions are presented in a highly conventionalized form, their notation often assembled from a stock of familiar elements. Thick narratives, by contrast, offer a greater degree of context and contingency and may be attentive to social, environmental and other considerations. The distinction is discussed with examples from chemistry; I suggest that chemical reaction schemes, written to describe organic syntheses, are examples of thin narratives. But some chemists, as well as historians, geographers and sociologists who study chemistry, have expressed reservations about what such accounts leave out, and seek to develop modes for narrating chemical processes, experiments and impacts which can provide a thicker account.
Phase-transfer catalysis involves chemical reactions which occur in a two-phase liquid–liquid system and it has been shown to provide an effective method for organic synthesis. Phase-transfer catalytic reactions can facilitate high conversions and reaction selectivity and thus are consistent with the principles of green chemistry and process intensification. The basic mechanisms involved in phase-transfer catalysis and the related suite of reactions that involve catalytic transfer hydrogenations are briefly described and reviewed. The requirements and benefits of phase-transfer catalytic systems are summarized. Organic syntheses which exploit the principles of phase-transfer catalysis are described as examples of intensification. These include: synthesis of phenyl alkyl acetonitriles, transfer hydrogenations, alkyl oxidation and sulfonation reactions, etherification of cresols in a three-phase system, organic oxidations, nitrations, polymerizations, and organic condensation reactions. The enhancement of phase-transfer catalysis using other intensification methods, such as ultrasonics, is also described.
Over the last decade, there has been an increased focus on describing condensed carbonaceous matter in rocks in several ultramafic settings and in experiments. This organic carbon – unaccounted for until now – seems to be ubiquitous in the crust, with profound implications for the deep carbon cycle and the sustainability of deep microbial ecosystems. Among the suite of abiotic organic compounds that may have formed abiotically in serpentinizing systems in particular are molecules of prebiotic interest, including a series of amino acids. In this chapter, the geochemical pathways for the abiotic synthesis of condensed carbonaceous matter are described, as well as the thermodynamic stability of such compounds and both their biotic and abiotic processing in the crust.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.