Granitoid gneisses intercalated with Koettlitz Group metasediments in the upper Ferrar, Taylor and Wright valleys of South Victoria Land comprise various hornblende+biotite orthogneisses and biotite orthogneisses, including the km-scale Dun and Calkin plutons. K-feldspar megacryst inclusion textures and discordant cross-cutting relationships with enclosing metasediments are interpreted as firm evidence of an intrusive origin for hornblende+biotite and biotite orthogneiss. The scale of several concordant orthogneiss bodies (including the Dun and Calkin plutons), the presence of mafic enclaves, and relict flow differentiation in hornblende+biotite orthogneiss are also compatible with a plutonic origin. Orthogneisses were emplaced prior to deformation that produced macroscopic upright, tight, folds about NW-trending axes. Petrography and geochemistry indicate I-type affinities for hornblende+biotite orthogneisses and the Dun Pluton. Hornblende+biotite and biotite orthogneisses (with the exception of the Dun Pluton) are part of a single petrogenetic suite, together with younger Bonney, Valhalla, and Hedley plutons. Emplacement of a continuum of I-type intrusives is envisaged which spanned Koettlitz Group deformation, and possibly caused much of the deformation. Hornblende+biotite and biotite orthogneisses are deformed precursors to the younger Bonney, Valhalla, and Hedley plutons. The Dun Pluton contains Fe-rich salitic clinopyroxene relicts and exhibits a unique geochemistry. It is rich in Sr, Al2O3, Na2O, and poor in FeO, K2O, Rb, Y, V. Chemical and petrographic features indicate an evolved body, possibly derived from a primitive source distinct from other orthogneisses and granitoids.