We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is shown that for any full column rank matrix X0 with more rows than columns there is a neighborhood \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\mathcal{N}$\end{document} of X0 and a continuous function f on \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\mathcal{N}$\end{document} such that f(X) is an orthogonal complement of X for all X in \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\mathcal{N}$\end{document}. This is used to derive a distribution free goodness of fit test for covariance structure analysis. This test was proposed some time ago and is extensively used. Unfortunately, there is an error in the proof that the proposed test statistic has an asymptotic χ2 distribution. This is a potentially serious problem, without a proof the test statistic may not, in fact, be asymptoticly χ2. The proof, however, is easily fixed using a continuous orthogonal complement function. Similar problems arise in other applications where orthogonal complements are used. These can also be resolved by using continuous orthogonal complement functions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.