We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Orthogonal Least Squares (OLS) algorithm is an efficient sparse recovery algorithm that has received much attention in recent years. On one hand, this paper considers that the OLS algorithm recovers the supports of sparse signals in the noisy case. We show that the OLS algorithm exactly recovers the support of $K$-sparse signal $\boldsymbol{x}$ from $\boldsymbol{y}=\boldsymbol{\unicode[STIX]{x1D6F7}}\boldsymbol{x}+\boldsymbol{e}$ in $K$ iterations, provided that the sensing matrix $\boldsymbol{\unicode[STIX]{x1D6F7}}$ satisfies the restricted isometry property (RIP) with restricted isometry constant (RIC) $\unicode[STIX]{x1D6FF}_{K+1}<1/\sqrt{K+1}$, and the minimum magnitude of the nonzero elements of $\boldsymbol{x}$ satisfies some constraint. On the other hand, this paper demonstrates that the OLS algorithm exactly recovers the support of the best $K$-term approximation of an almost sparse signal $\boldsymbol{x}$ in the general perturbations case, which means both $\boldsymbol{y}$ and $\boldsymbol{\unicode[STIX]{x1D6F7}}$ are perturbed. We show that the support of the best $K$-term approximation of $\boldsymbol{x}$ can be recovered under reasonable conditions based on the restricted isometry property (RIP).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.