A bandwidth expansion strategy for ultra-wideband power amplifiers (PAs) is presented in this letter by adopting a parallel impedance matching architecture. This design strategy can effectively reduce the impedance conversion ratio between the load and the target impedance of the PA, thereby providing a feasible solution for broadband impedance matching. Subsequently, a commercially available 10 W gallium nitride device and a two-stage Wilkinson power divider network are combined to achieve the verification of the proposed theory. The results of the measurement show that within the target frequency band of 0.9–3.9 GHz, 58.5–71.2% of the drain efficiency and 9.1–12 dB of gain can be achieved with a saturated output power of 39.1–42 dBm.