We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Chapter 8, we devote a whole chapter to how quantum amplifiers work. We discuss phase-preserving and phase-sensitive amplification and how to realize these with heterodyne and homodyne measurements. Focusing on quantum superconducting circuits, we discuss three-wave and four-wave mixing, the different types of circuits to build in order to realize amplification, and how it can go wrong.
Appendix I: propagation of a light beam in a nonlinear parametric medium, inducing a medium-assisted energy transfer between the input beam and the generation of signal and idler beams, hence the name three-wave mixing given to this phenomenon, which is first treated classically, then in a fully quantum way. One finds that, as in the case of fluorescence by spontaneous emission, the phenomenon of spontaneous parametric down conversion (or parametric fluorescence) requires a full quantum treatment, whereas parametric gain can be calculated semiclassically. It gives rise to entangled signal and idler photons as well as twin beams when one inserts the nonlinear medium in a resonant optical cavity (optical parametric oscillator) and to squeezing when the signal and idler modes are identical.
The focus of this chapter is on longitudinal variations of the refractive index and how such variations affect the propagation of light inside a GRIN medium. Section 7.1 describes the ray-optics and wave-optics techniques that can be used for this purpose. Section 7.2 focuses on tapered GRIN fibers and describes the impact of tapering on the periodic self-imaging for a few different tapering profiles. The analogy between a GRIN medium and a harmonic oscillator is exploited in Section 7.3 by employing several quantum-physics techniques for solving the GRIN problem. Section 7.4 is devoted to the case of periodic variations in the refractive index that are induced by changing the core’s radius of a GRIN fiber along its length in a periodic fashion.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.