We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For every $r\in \mathbb {N}_{\geq 2}\cup \{\infty \}$, we prove a $C^r$-orbit connecting lemma for dynamically coherent and plaque expansive partially hyperbolic diffeomorphisms with one-dimensional orientation preserving center bundle. To be precise, for such a diffeomorphism f, if a point y is chain attainable from x through pseudo-orbits, then for any neighborhood U of x and any neighborhood V of y, there exist true orbits from U to V by arbitrarily $C^r$-small perturbations. As a consequence, we prove that for $C^r$-generic diffeomorphisms in this class, periodic points are dense in the chain recurrent set, and chain transitivity implies transitivity.
We construct measures of maximal u-entropy for any partially hyperbolic diffeomorphism that factors over an Anosov torus automorphism and has mostly contracting center direction. The space of such measures has finite dimension, and its extreme points are ergodic measures with pairwise disjoint supports.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.