We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We characterize the topological spaces of minimum cardinality which are weakly contractible but not contractible. This is equivalent to finding the non-dismantlable posets of minimum cardinality such that the geometric realization of their order complexes are contractible. Specifically, we prove that all weakly contractible topological spaces with fewer than nine points are contractible. We also prove that there exist (up to homeomorphism) exactly two topological spaces of nine points which are weakly contractible but not contractible.
We propose a simple and efficient scheme for ranking all teams in a tournament where matches can be played simultaneously. We show that the distribution of the number of rounds of the proposed scheme can be derived using lattice path counting techniques used in ballot problems. We also discuss our method from the viewpoint of parallel sorting algorithms.
A partially ordered set P is said to have the n-cutset property if for every element x of P, there is a subset S of P all of whose elements are noncomparable to x, with |S| ≤ n, and such that every maximal chain in P meets {x} ∪ S. It is known that if P has the n-cutset property then P has at most 2n maximal elements. Here we are concerned with the extremal case. We let Max P denote the set of maximal elements of P. We establish the following result. THEOREM: Let n be a positive integer. Suppose P has the n-cutset property and that |Max P| = 2n. Then P contains a complete binary tree T of height n with Max T = Max P and such that C ∩ T is a maximal chain in T for every maximal chain C of P. Two examples are given to show that this result does not extend to the case when n is infinite. However the following is shown. THEOREM: Suppose that P has the ω-cutset property and that |Max P| = 2ω. If P — Max P is countable then P contains a complete binary tree of height ω
Let P be a partially ordered set. For an element x ∊ P, a subset C of P is called a cutset for x in P if every element of C is noncomparable to x and every maximal chain in P meets {x} ∪ C. The following result is established: if every element of P has a cutset having n or fewer elements, then P has at most 2n maximal elements. It follows that, if some element of P covers k elements of P then there is an element x ∊ P such that every cutset for x in P has at least log2k elements.
Let P be a finite, connected partially ordered set containing no crowns and let Q be a subset of P. Then the following conditions are equivalent: (1) Q is a retract of P; (2) Q is the set of fixed points of an order-preserving mapping of P to P; (3) Q is obtained from P by dismantling by irreducibles.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.