We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ambulatory monitoring is gaining popularity in mental and somatic health care to capture an individual's wellbeing or treatment course in daily-life. Experience sampling method collects subjective time-series data of patients' experiences, behavior, and context. At the same time, digital devices allow for less intrusive collection of more objective time-series data with higher sampling frequencies and for prolonged sampling periods. We refer to these data as parallel data. Combining these two data types holds the promise to revolutionize health care. However, existing ambulatory monitoring guidelines are too specific to each data type, and lack overall directions on how to effectively combine them.
Methods
Literature and expert opinions were integrated to formulate relevant guiding principles.
Results
Experience sampling and parallel data must be approached as one holistic time series right from the start, at the study design stage. The fluctuation pattern and volatility of the different variables of interest must be well understood to ensure that these data are compatible. Data have to be collected and operationalized in a manner that the minimal common denominator is able to answer the research question with regard to temporal and disease severity resolution. Furthermore, recommendations are provided for device selection, data management, and analysis. Open science practices are also highlighted throughout. Finally, we provide a practical checklist with the delineated considerations and an open-source example demonstrating how to apply it.
Conclusions
The provided considerations aim to structure and support researchers as they undertake the new challenges presented by this exciting multidisciplinary research field.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.