We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ideally, real-world data (RWD) collected to generate real-world evidence (RWE) should lead to impact on the care and health of real-world patients. Deriving from care in which clinicians and patients try various treatments to inform therapeutic decisions, N-of-1 trials bring scientific methods to real-world practice.
Methods:
These single-patient crossover trials generate RWD and RWE by giving individual patients various treatments in a double-blinded way in sequential periods to determine the most effective treatment for a given patient.
Results:
This approach is most often used for patients with chronic, relatively stable conditions that provide the opportunity to make comparisons over multiple treatment periods, termed Type 1 N-of-1 trials. These are most helpful when there is heterogeneity of treatment effects among patients and no a priori best option. N-of-1 trials also can be done for patients with rare diseases, potentially testing only one treatment, to generate evidence for personalized treatment decisions, designated as Type 2 N-of-1 trials. With both types, in addition to informing individual’s treatments, when uniform protocols are used for multiple patients with the same condition, the data collected in the individual N-of-1 trials can be aggregated to provide RWD/RWE to inform more general use of the treatments. Thereby, N-of-1 trials can provide RWE for the care of individuals and for populations.
Conclusions:
To fulfill this potential, we believe N-of-1 trials should be built into our current healthcare ecosystem. To this end, we are building the needed infrastructure and engaging the stakeholders who should receive value from this approach.
Obtaining informed consent from prospective participants for research studies that include next-generation nucleotide sequencing (NGS) presents significant challenges because of the need to explain all the potential implications of participating, including the possible return of “incidental” findings, in easy-to-understand language.
Methods and Results
After reviewing the consent processes at other institutions, we decided to supplement the protocol-specific informed consent form with the following: (1) a short pamphlet for the prospective participant that includes a series of questions that she or he is encouraged to ask the investigator, and (2) a more detailed companion guide for investigators to help them develop simple-language answers to the questions. Both documents are available to use or modify.
Conclusions
We propose an approach to obtaining informed consent for NGS studies that encourages discussion of key issues without creating a complex, comprehensive document for participants; it also maximizes investigator flexibility. We also suggest mechanisms to return restricted information to participants.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.