Crop losses caused by pests are a major problem in both developed and developing countries. Increasing awareness of the environmental consequences of indiscriminate use of chemical pesticides has provided new impetus for the search for alternative ways of managing pests. Particular emphasis has been placed on strategies that cause less pollution to the environment and those that are affordable, especially for the less developed countries. One concept that has received a lot of attention is integrated pest management (IPM), which seeks to manage pests and minimise crop losses by using methods that are economically viable and less harmful to the environment.
At least three distinct classes of new biotechnologies can have impacts on integrated pest management. These include microbial biotechnologies, plant molecular biology and genetics, and insect molecular biology and genetics. For example, recent advances in molecular biology have enabled scientists to overcome species barriers and to genetically alter plants, animals and microorganisms in ways that were not possible before. Already, several genetically altered plants which express genes that confer protection against pests have been produced. The techniques of biotechnology have also played important roles in elucidating pest populations and in studying the population dynamics of biological control agents and other types of organisms that live in association with crop plants. This article examines some of the major developments in the areas of molecular biology, genetics and biotechnology and the potential impacts that they could have on integrated pest management worldwide.