A method based on the Eulerian two-phase flow theory to numerically simulate three-dimensional rime ice accretions on an aircraft wing is presented in this paper. The governing equations for supercooled droplet motion under Eulerian framework are established using the droplet pseudo-fluid model. A permeable wall boundary condition is proposed to simulate the phenomenon of droplets impinging on the wing in solving the governing equations for droplets. The local droplet collection efficiency is readily obtained from the droplet flowfield solution in the control volume adjacent to the wing surface. The rime ice accretion can be simulated under the assumption that the droplets freeze immediately as they impinge on the wing surface since the environment temperature is low enough (typically below –15°C). A method to build the ice shape is proposed based on the assumption that ice grows in the direction normal to the wing surface. The rime ice accretion on a GLC-305 swept wing model under some specific conditions has been simulated to validate the present method. Furthermore, different flight conditions, namely, different angles of attack and different angles of sideslip, have been dealt with to investigate their effects on rime ice accretion as well as the corresponding aerodynamic effects.