Purity is known as an ideal of proof that restricts a proof to notions belonging to the ‘content’ of the theorem. In this paper, our main interest is to develop a conception of purity for formal (natural deduction) proofs. We develop two new notions of purity: one based on an ontological notion of the content of a theorem, and one based on the notions of surrogate ontological content and structural content. From there, we characterize which (classical) first-order natural deduction proofs of a mathematical theorem are pure. Formal proofs that refer to the ontological content of a theorem will be called ‘fully ontologically pure’. Formal proofs that refer to a surrogate ontological content of a theorem will be called ‘secondarily ontologically pure’, because they preserve the structural content of a theorem. We will use interpretations between theories to develop a proof-theoretic criterion that guarantees secondary ontological purity for formal proofs.