The rate-dependence of piezoelectric materials resulting from the kinetics of domain switching is an important factor that needs to be included in realistic modeling attempts. This paper provides a systematic study of the rate-dependent hysteresis behavior of a commercially available PZT stack actuator. Experiments covering full as well as minor loops are conducted at different loading rates with polarization and strain recorded. In addition, the creep behavior at different constant levels of the electric field is observed. This provides evidence of kinetics being characterized by strongly varying relaxation times that can be associated with different switching mechanisms.