We have re-analyzed observations of the water maser emission in IRAS 17347-3139 carried out previously and compared them with new higher angular resolution and more sensitive radio-continuum observations to explain the shift between the position of the peak of the radio-continuum with respect to the center of the ring-like distribution. From our analysis, we found that the water maser emission is not distributed in a closed ring-like structure, but in what appears to be a segment of an ellipse centered in the position of the peak of the radio-continuum. These results can explain the shift between the radio-continuum and the water maser emission. We also present interferometric observations of the OH maser emission towards IRAS 17347-3139 from which we have found that the OH maser emission detected previously is not associated with this source. Furthermore, since our observations are more sensitive, we have detected for the first time weak OH maser emission associated with IRAS 17347-3139.