We present optical integral field spectroscopy analysis of the main components, with the exception of the halo, as well as of the detected small-scale structures of the planetary nebulae NGC 3242. The observations were obtained with the VIMOS instrument attached to VLT-UT3. Spatially resolved maps of the electronic density (Ne), temperatures (Te) and chemical abundances, i.e., in a pixel to pixel fashion of the small and large-scales structures of this planetary nebula are determined in this work. These diagnostic and abundance maps represent important constraints for future detailed three dimensional photoionization modeling of the nebula, as well as providing important information on biases introduced by traditional slit observations.